Astronomija

Koji su najdragocjeniji meteoriti i asteroidi u smislu plemenitih metala?

Koji su najdragocjeniji meteoriti i asteroidi u smislu plemenitih metala?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Bilo je nekih prijedloga da bi se asteroidi mogli jednog dana iskopati za plemenite metale. Pronašao sam zastarjelu studiju koja kaže da neki sideriti sadrže čak 0,001% zlata: http://pubs.usgs.gov/circ/1968/0603/report.pdf

Postoje li nedavne studije o plemenitim metalima u svemirskim stijenama, tj. Platini, rodijumu, iridijumu, reniju, osmijumu, rutenijumu, paladiju, germaniju i zlatu, i je li to zaista održiv predmet rudarskih istraživanja?


Pronašao sam zastarjelu studiju koja kaže da neki sideriti sadrže do 0,001% zlata. Je li to zaista održiva tema rudarskog istraživanja?

Još ne, i to ne prilično dugo.

Zlato je dragocjeno jer ljudi godišnje izvade oko 2,5 miliona kilograma robe. Uporedite ovo s ogromnom količinom infrastrukture (i ogromnim troškovima) potrebnom za preuzimanje nekoliko kilograma stvari koje su na Zemlju vraćene iz svemira.

Nemamo maglovitu ideju kako rudariti minerale u svemiru, a kamoli minerale koji bi u najboljem slučaju mogli imati koncentraciju od deset dijelova na milion (još jedan način da pogledamo vašu vrijednost od 0,001%). S druge strane, postoje mnoge ideje u vezi s iskorištavanjem neiskorištenih resursa upravo ovdje kod kuće. Na primjer, po cijelom morskom dnu ima čvorova mangana. Ovi čvorovi ne sadrže samo mangan, već i gvožđe, nikal i plemenite metale. Svemirsko rudarstvo ne može se nadmetati s onim neiskorištenim lokalnim resursima dok ih ne potroši. (A onda ćemo pronaći još jedan neiskorišteni lokalni resurs.)

Iskopavanje stvari u svemiru bit će isplativo samo ako za tim postoji potreba u svemiru. Ako svemirsko rudarstvo postane stvarnost, prve stvari koje će se iskopati bit će prilično svakodnevne hlapljive tvari poput vode i metana, a ne metali. Te hlapljive materije su slabo visi voće u svemiru. Kako ekstrahirati i iskoristiti te prizemne hlapljive sastojke dobar je problem za našu trenutnu generaciju mladih odraslih osoba. Kako ići dalje od toga problem je njihove unuke.


Rijetki meteorit sadrži novi mineral, nikada ranije viđen u prirodi

Naučnici su otkrili novi mineral, koji nikada prije nije viđen u prirodi, smješten u meteoritu pronađenom u blizini Wedderburna u središnjoj Viktoriji.

Oni vjeruju da je mineral vjerojatno kovan u rastopljenoj jezgri drevne planete davno uništene.

Meteorit je crveno-crn i duboko je ožiljak od svog putovanja od milion i više godina, i sigurno izgleda kao dio. Mineral koji sadrži kršten je edskotitom.

Mineral je pronađen nakon pomnog ispitivanja meteorita Wedderburn, komadića metala veličine limuna pronađenog neposredno ispred Wedderburna 1951. godine, koji je sada dio zbirke muzeja Victoria.

Pronašli smo mnogo meteorita, ali meteorit iz jezgre druge planete izuzetno je rijedak.

Tokom godina nekoliko znatiželjnih naučnika iz cijelog svijeta, očajnički željni da ga prouče, uspjeli su osigurati da se u svodovima muzeja još uvijek nalazi kriške od samo 71 grama izvorne stijene od 220 grama.

Tim iz CalTech-a u SAD-u uspio je doći do kriške 2018. godine kako bi provjerio sadrži li rijetke minerale.

Mineral je raspored atoma u različitim oblicima. Dijamant je, na primjer, raspored ugljikovih atoma. Grafit na vrhu olovke također je ugljik, ali raspoređen u drugačijoj strukturi.

Unutar meteorita, utisnutog između ostalih slojeva minerala, istraživači su pronašli tanki komadić novog materijala. Pod mikroskopom podsjeća na male bijele kristale.

Otkrili su da je mineral izrađen od atoma gvožđa i ugljenika pomiješanih zajedno u određeni obrazac. Nazvali su ga edscottite, po Edwardu Scottu, pionirskom kosmohemičaru sa Havajskog univerziteta.

& quot; Ovaj meteorit je imao obilje ugljenika u sebi. I dok se polako hladilo, gvožđe i ugljenik spojili su se i stvorili ovaj mineral, "kaže dr. Stuart Mills, viši kustos za geoznanosti Museums Victoria.

Naučnici su i ranije nailazili na edskotit, u topionicama. Jedna je od faza kroz koje željezo prolazi kada se topi u čelik.

Ali nikada nisu vidjeli da se to prirodno događa. A minerali dobivaju ime tek kad ih možete pronaći u prirodi.

& quotMi smo u laboratoriju otkrili 500.000 do 600.000 minerala, ali manje od 6000 koje je sama priroda učinila, & quot; kaže Mills.

Sad, o toj planeti. Šta mu se dogodilo?

"Razneseno je", kaže Geoffrey Bonning, planetarni naučnik sa Australijskog nacionalnog univerziteta.

Naš Sunčev sistem - Zemlja, vi i ja - započeli smo kao prašina koju emitiraju davno mrtve zvijezde.

Ta se prašina vrtjela svemirom sve dok je gravitacija napokon nije počela skupljati, malo po malo. Te su grudice postajale sve veće i veće, prvo stvarajući zrnca pijeska, zatim velike komade, a zatim asteroide široke kilometar.

Na kraju su se ti asteroidi skupili i stvorili planete.

"Sve stijene su donekle radioaktivne", kaže Bonning. & quot; Dakle, ova planeta počinje da se topi iznutra. & quot

Vrući metal kapao bi u srž planete. Toplina i pritisak generirali su minerale poput edskotita.

A onda se, u jednom trenutku, planeta razbila. Vjerovatno ga je pogodio neki drugi planet ili mjesec ili ogromni asteroid, kaže Bonning. Mnoge planete su stvorene i uništene u ranim danima Sunčevog sistema.

Ruševine od sudara razbacane su Sunčevim sistemom, a veći dio završio je u pojasu asteroida između Marsa i Jupitera. Meteorit Wedderburn kružio je tamo nekoliko miliona godina, prije nego što ga je slučajni sudar odvezao prema Zemlji.


Koliko su vrijedni meteoriti?

Meteoriti se obično prodaju po težini. Zajednica sakupljača meteorita koristi metrički sistem pa se težine mjere u gramima i kilogramima, a dimenzije u centimetrima i milimetrima.

Kao što je slučaj sa većinom kolekcionarskih predmeta, komercijalnu vrijednost meteorita određuje niz faktora, uključujući rijetkost tipa, porijeklo, stanje očuvanosti i ljepotu ili estetsku privlačnost.

Važno je napomenuti da novi i zapaženi nalazi meteorita uvijek trebaju biti dostupni naučnoj zajednici na proučavanje. Jednom kada akademska zajednica analizira i klasificira meteorit, višak primjeraka pronalazi put na komercijalno tržište. Proces prihvatanja u službenu naučnu literaturu zapravo dodaje komercijalnu vrijednost meteoritu.

Cijene meteorita variraju od jednog do drugog izvora, ali ovdje navedeni brojevi tipični su za maloprodajne vrijednosti na današnjem tržištu i rsquos. Nerazvrstani kamen hondriti pokupljeni od strane nomada koji lutaju pustinjom Sahara lako su dostupni otprilike

Falls Versus Finds

Meteoriti za koje vjerodostojni promatrači vide da padaju poznati su kao svjedočio padovima, dok su oni koji su kasnije slučajno otkriveni poznati kao nalazi. Svjedoci pada obično određuju više cijene od nalaza, a neki sakupljači meteorita lično nastoje nabaviti primjer meteorita koji je pao na njihov stvarni rođendan. Nije uvijek lak zadatak. Jedan kamen koji je pao u zapadnom dijelu SAD-a na moj rođendan zaključan je u velikoj muzejskoj zbirci i možda nikada neću moći dobiti komad, iako imam neke nade!

Poznati Peekskill meteorit je obični hondrit (H6) bez posebnog znanstvenog interesa, ali sjajan primjer kako izvanredna priča može dodati vrijednost inače neuglednom meteoritu. Činjenica da je 12,4 kilograma težak kamen Peekskill u noći na 9. oktobar 1992. godine udario prtljažnik parkiranog Chevyja Malibua iz 1980. godine, čini ga jednim od najpoželjnijih primjeraka za sakupljače svjedoka pada. Iako biste lako mogli kupiti još jedan H6 hondrit za 1 USD po gramu ili manje, uzorak Peekskill koštat će od 100 do 200 USD po gramu ako nađete nekoga tko bi se volio rastati s dijelom.

Identifikacija meteorita
Ako želite naučiti o identifikaciji meteorita i otkriti kako izvoditi neke jednostavne testove kod kuće, posjetite The Aerolite Guide to Meteorite Identification. Meteoriti su vrlo vrijedni kako za naučnu zajednicu, tako i za oduševljene kolekcionare. Dakle, ako mislite da je netko sletio u vaše dvorište, provjerite!

.50 / gram. Atraktivno kamenje iz Gao-Guenieja koje je svjedočilo padu (Burkina Faso, Afrika, 5. marta 1960.) može se kupiti po cijeni od oko 1,50 američkih dolara po gramu, a može se nabaviti i vrhunski primjerak od jednog kilograma željeznog meteorita Campo del Cielo iz provincije Chaco u Argentini. vaš za oko 400 dolara.

Rusko gvožđe Sikhote-Alin (palo je 12. februara 1947.) najveći je pojedinačni meteorit u modernoj zabilježenoj povijesti. Pojedinci i mdash uzorci meteorita koji su dosli kao jedan netaknuti komad, umjesto da eksplodiraju na zemlji ili blizu zemlje, a mdash priželjkuju sakupljači njihove čudesne skulpturalne kvalitete i površinske osobine. Vrhunski uzorak Sikhote-Alin koštat će od 2 do 3 dolara po gramu.

Palaziti su meteoriti od kamena-željeza prepuni olivina (peridot dragog kamenja) i posebno su poželjni kada se režu i poliraju zbog primamljive boje i prozirnosti kristala koje sadrže. Pripremljene kriške stabilnih palazita kao što su Imilac (Čile), Glorieta Mountain (Novi Meksiko, SAD) i Esquel (Argentina) cijenjene su zbog svojih šarenih dragog kamenja i dugotrajne stabilnosti, a donijet će između 20 i 40 USD / gram. Meteoriti su teški, tako da kvalitetna kriška veličine male ploče za jelo vrijedi hiljade dolara.

Na visokom kraju cjenovne ljestvice nalaze se neobične vrste poput diogenit Tatahouine (pao 27. juna 1931, Foum Tatahouine, Tunis). Vrhunski uzorak lako će donijeti 50 dolara po gramu, dok se rijetki primjeri mjesečevih i marsovskih meteorita mogu prodati po cijeni od 1.000 dolara po gramu ili više i gotovo četrdeset puta veći od trenutne cijene zlata!

Meteorit s povijesnim etiketama: Henburyjevo željezo od 197,2 grama pronađeno je u Australiji sredinom 1930-ih, okruženo zbirkom uzoraka ličnih karata i muzejskim etiketama. Ovaj konkretni Henbury stečen je u institucionalnoj trgovini sa Prirodnjačkim muzejom u Londonu, a predstavljen je i u naučnom radu objavljenom tokom 30-ih. Takva neobična provenijencija dodaje značajnu vrijednost onome što je već vrlo privlačan skulpturalni komad. Osobne iskaznice su iz nekih od najistaknutijih muzeja i kolekcija na svijetu, uključujući Museum National D'Histoire Naturelle (Pariz), Zbirku meteorita Oscar E. Monnig (Fort Worth, Teksas), Britanski muzej i Američka laboratorija za meteorite. Povijesne etikete poput ovih uvelike povećavaju vrijednost uzoraka meteorita koje prate. Fotografija Leigh Anne DelRay, autorsko pravo Aerolite Meteorites. Kliknite za uvećanje.


NASA-in teleskop Hubble snimio je rijetki metalni asteroid vrijedan 70.000 puta globalne ekonomije

Rachel Cormack

Rachel Cormack & # 039s Najnovije priče

Maxar / ASU / P. Rubin / NASA / JPL-Calt

Ljudi su upravo dobili još jedan razlog više za putovanje u svemir. Postoji & rsquos rijedak asteroid veličine Massachusettsa koji kruži između Marsa i Jupitera, a vrijedan je oko 10 000 kvadriliona dolara.

Rijetkost, poznata kao 16 Psyche, zapravo je otkrivena davne 1852. godine, ali NASA & rsquos teleskop Hubble konačno je stanovnike zemlje pobliže pogledao. Nova studija, koja je objavljena ove sedmice u Planetary Science Journal, ukazuje da je sastav asteroida i rsquosa ključan za njegovu astronomsku vrijednost.

Povezane priče

Da bismo ovu reklamiranu figuru stavili u perspektivu, kada se napiše u cijelosti, može se pohvaliti linijom nula koje bi se mogle gotovo proširiti do samog asteroida. To & rsquos 10.000.000.000.000.000.000 dolara. To čini Psihu 70.000 puta vrednijom od globalne ekonomije, čija je vrednost oko 142 biliona dolara u 2019. godini, ili dovoljno za kupovinu i prodaju Jeffa Bezosa, čija je neto vrednost samo 200 milijardi dolara, oko 50 miliona puta. To je sve zahvaljujući nekom teškom metalu.

Čini se da je Psiha u prečniku 140 kilometara u potpunosti napravljena od željeza i nikla. Ova metalna konstrukcija izdvaja je od ostalih asteroida koji se obično sastoje od kamena ili leda.

Umjetnički koncept asteroida i svemirske letjelice Psyche. Maxar / ASU / P. Rubin / NASA / JPL-Calt

& ldquoWe & rsquove smo vidjeli meteorite koji su uglavnom metali, ali Psyche bi mogao biti jedinstven po tome što bi mogao biti asteroid koji je u potpunosti napravljen od željeza i nikla, & rdquo, rekla je dr. Tracy Becker, planetarni naučnik i autor novog rada, u izjavi .

Pa, kako je nastao skupi asteroid? Prema Beckeru, moguće je da je Psiha zaostalo jezgro planete koja se nikada nije pravilno formirala jer su je pogodili objekti u našem Sunčevom sistemu i efektivno izgubila svoj plašt i koru.

Asteroid se trenutno nalazi na oko 230 miliona milja od Zemlje u glavnom asteroidnom pojasu Sunčevog sistema i rsquos-a, koji kruži između Marsa i Jupitera. I, što nije iznenađujuće, NASA ga planira ponovo posjetiti. 2022. administracija planira lansirati svemirsku letjelicu Psyche za daljnje proučavanje asteroida.

Kad bi mogli ljubazno vratiti asteroid, svaka osoba na planeti & mdashall nas 7,5 milijardi & mdash bi dobila otprilike 1,3 milijarde USD.


Šta su meteoriti?

Kad se asteroid iz nekog razloga slomi, od njega se odvoji mali komad, nazvan meteoroid. Kad se ti meteoriti približe zemlji, izgaraju u dodiru s atmosferom i vidimo svjetlost koja izgleda poput zvijezde padalice ili zvijezde padalice, ali zapravo nisu zvijezde. Nije neophodno da svaki meteorit izgori čim stigne na zemlju. Neki veliki meteoriti također slijeću na zemlju bez sagorijevanja i tada se nazivaju meteoriti. NASA-in svemirski centar Johnson održava kolekciju meteorita pronađenih u različitim krajevima svijeta, a njihovim proučavanjem otvaraju se slojevi asteroida, planeta i naših solarnih sistema.


10 najskupljih meteorita ikad ponuđenih na Zemlji

Hiljadama godina ljudi su bili fascinirani 'nebesima gore', a posebno tajanstvenim objektima koji su pali na zemlju. Sada znamo da su ovi predmeti meteoriti, ali postoje dokazi da su drevni Egipćani prije 5.000 godina cijenili željezo koje sadrže zbog izrade nakita. Prije sredine 40-ih, meteoriti su se uglavnom smještali samo na univerzitetima i u muzejima. Međutim, 1946. Harvey H. počeo je prodavati ove nevjerovatne predmete javnosti. Od tada su mnogi zaljubljenici u meteorite pretvorili svoju strast u legitimne poslove koji su svima otvorili prikupljanje meteorita. Ponekad se ovi međuzvjezdani predmeti mogu prodati i po međuzvjezdanim cijenama. Istražimo najskuplje komade meteorita do sada ponuđene na Zemlji!

10. Gibeonski meteorit - 280.000 €
Ovaj gigantski metalni meteorit nije običan. Svemirska stijena opisana je kao nezemaljska sličnost čuvene slike Edvarda Muncha "Krik". Meteorit je otkriven na ivici pustinje Kalahari u južnoj Africi i procjenjuje se na vrijednost od 280.000 eura.

9. Glavna masa Zagami meteorita - 278.000 €
Meteorit Zagami kristalizirao je iz bazaltne magme prije oko 175 miliona godina i do danas je najveći Marsov meteorit otkriven na Zemlji. 1962. godine farmera u Zagamiju u Nigeriji zamalo je pogodio ovaj velikan meteorit kad se srušio. Dio mase je ponuđen na prodaju i ima vrijednost veću od 278.000 eura.


8. Lunarni meteorit Dar al Gani 1058 - 281.000 €
Najveća lunarni meteorit ikad dostupan na aukciji, težak 4 kilograma, pronađen je u Libiji 1998. Meteorski udari na Mjesec izbacuju površinski materijal u svemir koji ponekad može završiti na Zemlji. Mjesečeve stene su, naravno, došle i na zemlju kroz svemirske misije, ali je dotični meteorit sam pao na Zemlju.


7. Čeljabinski meteorit - 336.000 €
2013. godine meteor je eksplodirao iznad ruskog grada Čeljabinska. Ova stijena je jedini meteorit koji je ozlijedio velik broj ljudi, a preko 1.500 ljudi tog je dana trebalo liječiti. Priča iza meteorit je takođe važno kada se razmatra njegova vrijednost. Meteorit koji je imao svjedoke kada je pao na zemlju može imati veću cijenu. Okolnosti njegovog pada stoga su garantovale veće vrijednosti za fragmente meteorita u Čeljabinsku.


6. Marsovski meteorit Zagami - 383.000 €
Marsovski meteor Zagami sletio je u Nigeriju 1962. godine. Najveći komad meteorita pojavio se na prodaju 2006. godine, a prije nego što je uopće prodan, planetarijumi iz cijelog svijeta molili su buduće kupce da im ga stave na raspolaganje na posudbu.


5. Meteorit izvorske vode - 511.000 €
Ovaj palazit meteorit težak 117 kilograma otkriven je na farmi u Saskatchewanu u Kanadi 1931. godine. Vjeruje se da je star 4,5 milijardi godina i sadrži veliku količinu minerala olivina. Kada se narežu i poliraju, mogu se jasno vidjeti prekrasni kristali olivina, nešto što može učiniti palazitne meteorite vrlo poželjnim za sakupljače. Kupio ga je Kraljevski muzej Ontario u Torontu za 511.000 eura.


4. Meteorit spoja začeća - 724.000 €
Istraživači vjeruju u ovo meteorit je nekada bio dio asteroida koji je kružio između Marsa i Jupitera. Otkrio ga je 2006. poljoprivrednik u Conception Junction Missouri. Univerzitet u St. Louisu identifikovao je svemirsku stijenu kao palazit, u kojem su bili kristali olivina. Oni su posipani po površini željeza i nikla, poput čipsa u kolačiću!


3. Willamette Meteorit - 851.000 €
U oktobru 2007. godine, ovaj fragment meteorita vrijedan milion eura ponuđen je na prodaju u New Yorku. Darovao ga je Američki prirodnjački muzej. Smatra se da je ovaj meteorit bio jedan od najvećih meteorita pronađenih na zemlji. Otkriven 1902. godine, imao je više od 16 tona kada je pronađen.


2. Glavna misa meteora Brenham - 896.000 € +
Ovaj palatezitni meteorit 'gvozdene čipke' težak je pola tone i procjenjuje se na 896.000 eura. Stijena je oblikovana poput štita i pronađena je u Kansasu 2005. Zadovoljstvo posjedovanja meteorita leži u romansi postojanja nečega što nije sa same zemlje i što bi moglo biti jedna od najstarijih stvari u svemiru.


1. Meteorit Fukang - 1,7 miliona eura
Ovaj meteorit je palazit izrađen od nikal-gvožđa prošaranog olivinskim (zelenim) kristalima. Stvarno rijetko otkriće, jer naučnici vjeruju da je samo 1% svih meteoriti koji su pali na zemlju su palaziti. Smatra se da je ovaj meteorit star 4,5 milijardi godina, što znači da je ova stijena gotovo iste dobi kao i naša planeta ili starija. Pronađen je 2000. godine i, kao i mnogi meteoriti, ime je dobio po lokaciji na kojoj je pao. To nije samo jedan od najskupljih meteorita na svijetu, već i možda jedan od najljepših.


Meteorit je zaista dragocjeno otkriće jer je ovo kamenje skuplje od zlata i ne dolazi svakodnevno. Ako ste i sami pravi sakupljač meteorita, krenite na našu aukciju i zadivite se izvanrednim nalazima našeg tjednika Meteoriti aukcija. Ili se registrujte ovdje da postanete prodavač i zaradite na svojim otkrićima nudeći ih na aukciji.


Rijetki meteoriti na zemlji iskovani u masovnom padu na Asteroid Vesti

Tajanstveni rijetki meteoriti napravljeni od mješavine kamena i željeza vjerojatno su nastali kada Vesta, najsjajniji asteroid na nebu, doživjela gigantski udar, otkriva novo istraživanje.

Taj se udar dogodio prije više od 4,5 milijardi godina kada su se sudarile još uvijek mlada Vesta i komad stijene otprilike desetine veličine, a potonja je prodrla sve do srži Veste, tvrde istraživači. Kao rezultat meteoriti pustili su naučnike da sastave detaljniju biografiju velikog asteroida, rekao je za Space.com vodeći autor Makiko Haba, planetarni naučnik sa Tokijskog tehnološkog instituta.

Tri su glavne skupine meteorita: kameni, željezni i kameno-željezni. Kameniti meteoriti, najveća skupina, nastali su od vanjske kore asteroida ili planete, a sastoje se uglavnom od minerala bogatih silicijumom, poznatih kao silikati. Gvožđe meteoriti, sljedeća najčešća vrsta, sastoji se uglavnom od željeza i nikla i nastala je iz jezgre asteroida ili planeta. Najrjeđi meteoriti su meteoriti od kamena i željeza, koji sadrže približno jednake dijelove kamena i željeza.

Jedna vrsta kamena-željeznog meteorita su mezozideriti, čija hemija sugerira da njihovi sastojci potječu i od kamene kore i od rastaljene metalne jezgre asteroida, ali neobično od plašta. sloj između toga, postavljanje pitanja kako se to moglo dogoditi.

Sada istraživači sugeriraju da su ovi misteriozni meteoriti nastali nakon kolosalnog udara koji je Vesta, drugi po veličini asteroid koji je poznat, doživjela u ranim danima Sunčevog sistema. "Predlažemo novu evolucijsku istoriju Veste," rekao je Haba.

Naučnici su analizirali pet mezoziderita koji su otkriveni iz Čilea, Ajove i sjeverozapadne Afrike između 1861. i 2014. Primijetili su da su kristali cirkona u meteoritima vjerovatno nastali kada su metali u tim mezosideritima rastopljeni. Fizičke karakteristike kristala i metala u meteoritima sugeriraju da su ovi materijali pomešani u rastopljenoj jezgri asteroida širokog oko 530 kilometara, što odgovara Vesti, rekli su.

Haba i njene kolege su potom analizirale oko dva tuceta kristali cirkona ekstrahovan iz pet mezoziderita. Nakon ispitivanja nivoa izotopa urana i olova u ovim cirkonima, zaključili su da su silikati u tim meteoritima nastali pre oko 4,55 milijardi godina, a silikati i metali pre oko 4,52 milijarde godina.

Naučnici su predložili da se, nakon što se Vesta formira i ohladi dovoljno da se razdvoji u nju različite slojeve kore, plašta i jezgre, kamen veličine oko desetine veličine Veste zabio se u asteroid. Ovaj sudar-i-i-sudar eksplodirao je krater na sjevernoj hemisferi Veste koji je sezao sve do jezgre asteroida, rekli su.

Neki od otpadaka od ovog udara, sastavljeni od sva tri Vestina sloja, pali su natrag na asteroid, uglavnom na Vestinu južnu hemisferu, napisali su istraživači. To bi objasnilo neobično gustu koru koja NASA-ina svemirska letjelica Dawn otkriven na Vesinom južnom polu.

Par preklapajućih udarnih kratera viđenih u blizini Vestinog južnog pola od dva sudara & mdash, od kojih se jedan vjerojatno dogodio prije oko 2 milijarde godina, a drugi prije oko milijardu godina & mdash mogao je izbaciti stijene sastavljene od mješavina materijala iz Vesine kore i jezgre. To bi objasnilo mezosiderite viđene na Zemlji, rekli su istraživači.

"Otkrili smo da ovaj model može objasniti sve probleme u vezi s tim Vesta", Rekao je Haba." Bio je to trenutak eureke. "

Sve u svemu, "odredili smo tačno vrijeme nastanka mezoiderita na Vesti i pokazali da možemo rekonstruirati Vesinu evoluciju na osnovu ove hronologije," rekao je Haba. "Ovo je prvi korak za nas i primijenit ćemo ovaj koncept na što više drugih planetarnih tijela."

Naučnici su detaljno objasnili njihova otkrića na mreži danas (10. juna) u časopisu Nature Geoscience.


Stijena koju je pronašao Missouri Farmer je rijetki meteorit

Godine 2006. poljoprivrednik je pronašao meteorit zakopan na obronku brda u gradu Missouri, Conception Junction (populacija 202). Ali tek sada je istinska vrijednost otkrića svemirskih stijena izašla na vidjelo.

Geohemičar Randy Korotev sa Univerziteta Washington u St. Louisu i njegove kolege identifikovali su svemirsku stijenu kao rijetku vrstu palazitnog meteorita, rekli su istraživači danas (10. novembra). Samo 19 drugih palazita ikad je pronađeno u Sjedinjenim Državama.

Meteorit je prešao dugačak put da bi se našao u Korotevovim rukama.

Kozmičko putovanje

Istraživači misle da je ovaj meteorit nekada bio dio asteroida koji je kružio oko Sunca u pojasu asteroida između Marsa i Jupitera. U određenom trenutku, ovaj fragment je srušen u orbitu koja je prešla Zemljinu putanju i gravitacijom ga je povukao na našu planetu. [Fotografije: Asteroidi u dubokom svemiru]

Znanstvenici nisu sigurni kada je meteorit pogodio Zemlju, ali otkriven je 2006. godine kada je farmer, koji je tražio da ostane anoniman, pronašao posebno tešku stijenu na obronku križanja Conception Junction.

Iako je kamen izvana izgledao obično, kada je farmer otpio njegov rub, otkrila se lijepa i neobična unutrašnjost. Zeleni kristali minerala zvanog olivin posipani su po matrici željeza i nikla poput čipsa u kolačiću. Ovo su oznake palazita.

2009. godine Karl Aston, kemičar iz St. Louis-a i amaterski lovac i sakupljač meteorita, čuo je za stijenu i pridružio se prijateljima da je kupe.

Da bi utvrdili kakav su kamen imali na rukama, kolekcionari su stijenu donijeli Korotevu, koji je među ljubiteljima meteorita bio poznat po svojoj web stranici o identificiranju svemirskih stijena.

"Ne bismo bili uključeni u validaciju meteorita prijelaza za začeće da Karl nije pronašao moju stranicu", rekao je Korotev u izjavi. Naučnik i zaljubljenik u meteorite bio je nestrpljiv da pregleda kamen, što mu je dopustilo da ga "na kratko mazi", rekao je.

Jedinstveni svemirski kamen

Korotev i njegov tim uzeli su uzorak stijene i analizirali elementarni sastav kristala olivina da bi je klasificirali. Otkrili su da je to dio glavne grupe palazitskih stijena, slično većini od ostalih 19 koji su prije bili pronađeni u ovoj zemlji.

Da bi saznali je li riječ o komadu poznatog meteorita koji je već proučavan ili je uopće riječ o novom kamenu, znanstvenicima su bila potrebna daljnja ispitivanja. Korotev je poslao Astona i sakupljače meteorita do Johna Wassona iz UCLA-e, koji je imao posebne alate za analizu metalne matrice u kojoj su kristali bili postavljeni.

Wasson je zaključio da je stijena jedinstvena, nije povezana sa bilo kojim od prethodnih palazita koji su već pronađeni. To je kvalifikovalo meteorit za svoje ime. 27. avgusta 2011. godine, Nomenklaturni odbor Meteoritičkog društva službeno je nazvao stijenu Conception Junction, prema lokaciji na kojoj je pronađen.

Većina meteorita napravljena je od jedne vrste materijala, ali palaziti poput Conception Junction su različiti. Ovo kamenje dolazi od velikih asteroida koji su proizveli dovoljno unutrašnje toplote da delimično rastope njihovu unutrašnjost, stvarajući tečno jezgro metala i kamenitu spoljašnjost.

Smatra se da palaziti koji sadrže mješavinu metala i kamena dolaze s granice asteroida između njegove metalne jezgre i minerala olivina u srednjem sloju, zvanom plašt.

Smatra se da su asteroidi ostaci koji su ostali nakon planeta nastalih u Sunčevom sustavu, pa su napravljeni od istih stvari kao i Zemlja. Istraživači misle da je granica između jezgre naše planete i plašta slična nalik melasu palazita, pa nude jedinstvenu priliku za proučavanje.

"Ne možemo otvoriti Zemlju", rekao je Korotev. "Ne možemo sići tamo i uzorkovati stijenu, ali imamo ove dijelove slomljenih asteroida koji sleću na Zemlju, a napravljeni su od istih stvari, samo su puno manji."

Iz zabave

Kad se nareže i polira, meteorit Conception Junction vrijedi između 30 i 50 dolara po gramu. Suprotno tome, uobičajeni meteoriti prodaju se za 2 ili 3 dolara po gramu, dok je prvi lunarni meteorit koji je pronašao privatni kolekcionar koštao 40.000 dolara za gram, rekao je Korotev.

Sve u svemu, stena Conception Junction teži oko 17,5 kilograma, što dovodi do ukupne vrijednosti između 510.000 i 850.000 američkih dolara, ako se kupi u komadu. Međutim, gotovo 25 posto kamena gubi se pri rezanju i poliranju, što čini njegovu konačnu vrijednost nižom. Aston i ostali kolekcionari donirali su većinu svog meteorita univerzitetima i muzejima, ali još uvijek ima nekih primjeraka koji se mogu kupiti.

Uprkos visokoj cijeni koju je stena postigla, Korotev je rekao da meteoriti nisu dobra brza šema obogaćivanja.

"Ne znam niti jednog bogatog sakupljača meteorita," rekao je Korotev. "To rade uglavnom iz zabave."

Napomena urednika: Ovaj je članak ispravljen kako bi odražavao činjenicu da meteorit vrijedi najviše 850.000, a ne 3,4 miliona dolara, nakon ispravke greške u saopćenju za javnost kojim se najavljuje nalaz.


Sadržaj

Kako iscrpljivanje resursa na Zemlji postaje sve stvarnije, ideja o vađenju dragocjenih elemenata iz asteroida i njihovom vraćanju na Zemlju radi zarade ili korištenju svemirskih resursa za izgradnju satelita solarne energije i svemirskih staništa, [5] [6] postaje sve privlačnija . Hipotetički, voda prerađena iz leda mogla bi dopunjavati gorivo koje kruži oko skladišta goriva. [7] [8] [9]

Iako su se asteroidi i Zemlja prirasli istim polaznim materijalima, relativno jača Zemljina gravitacija povukla je sve teške siderofilne (željezne) elemente u svoje jezgro tokom svoje rastaljene mladosti prije više od četiri milijarde godina. [10] [11] [12] Ovo je ostavilo koru iscrpljenu tako vrijednim elementima sve dok kiša udara asteroida nije ponovo infuzirala osiromašenu koru metalima poput zlata, kobalta, gvožđa, mangana, molibdena, nikla, osmijuma, paladija, platine , renij, rodijum, rutenij i volfram (određeni tok teče od jezgre do površine, npr. u magnetskom kompleksu Bushveld, čuveno bogatom izvoru metala platinske grupe). [ potreban citat ] Danas se ti metali vade iz Zemljine kore i neophodni su za ekonomski i tehnološki napredak. Stoga geološka istorija Zemlje može itekako postaviti temelje za budućnost iskopavanja asteroida.

2006. godine Opservatorij Keck objavio je da su binarni Jupiterov trojanski 617 Patroclus [13], a možda i veliki broj drugih Jupiterovih trojanaca, vjerovatno izumrle komete i da se uglavnom sastoje od vodenog leda. Slično tome, komete iz porodice Jupitera, a možda i asteroidi u blizini Zemlje koji su izumrle komete, takođe mogu pružiti vodu. Proces iskorištavanja resursa na licu mjesta - koristeći materijale urođene u svemir za pogonsko gorivo, upravljanje toplotom, tankiranje, zaštitu od zračenja i druge komponente masovne infrastrukture velike mase - mogao bi dovesti do radikalnog smanjenja njegovih troškova. [14] Iako je nepoznato da li bi se ta smanjenja troškova mogla postići, i ako bi se postigla, nadoknadila ogromna ulaganja u infrastrukturu.

Led bi udovoljio jednom od dva neophodna uslova da bi se omogućilo „širenje ljudi u Sunčev sistem“ (krajnji cilj za ljudski svemirski let predložen od strane „Augustinove komisije“ iz 2009. godine, Odbora za planove za ljudski svemirski plan Sjedinjenih Država): fizička održivost i ekonomska održivost . [15]

Iz astrobiološke perspektive, istraživanje asteroida moglo bi pružiti naučne podatke za potragu za vanzemaljskom inteligencijom (SETI). Neki astrofizičari sugeriraju da bi, ako bi napredne vanzemaljske civilizacije davno koristile rudnike asteroida, obilježja ovih aktivnosti mogla biti uočljiva. [16] [17] [18]

Usporedba delta-v zahtjeva za standardne Hohmannove prijenose
Misija Δ v
Zemljina površina za LEO 8,0 km / s
LEO do bliskog Zemljinog asteroida 5,5 km / s [napomena 1]
LEO do lunarne površine 6,3 km / s
LEO Marsovim mjesecima 8,0 km / s

Važan čimbenik koji treba uzeti u obzir pri odabiru ciljeva je orbitalna ekonomija, posebno promjena brzine (Δ v) i vremena putovanja do i od cilja. More of the extracted native material must be expended as propellant in higher Δ v trajectories, thus less returned as payload. Direct Hohmann trajectories are faster than Hohmann trajectories assisted by planetary and/or lunar flybys, which in turn are faster than those of the Interplanetary Transport Network, but the reduction in transfer time comes at the cost of increased Δ v requirements. [ potreban citat ]

The Easily Recoverable Object (ERO) subclass of Near-Earth asteroids are considered likely candidates for early mining activity. Their low Δ v makes them suitable for use in extracting construction materials for near-Earth space-based facilities, greatly reducing the economic cost of transporting supplies into Earth orbit. [19]

The table above shows a comparison of Δ v requirements for various missions. In terms of propulsion energy requirements, a mission to a near-Earth asteroid compares favorably to alternative mining missions.

An example of a potential target [20] for an early asteroid mining expedition is 4660 Nereus, expected to be mainly enstatite. This body has a very low Δ v compared to lifting materials from the surface of the Moon. However, it would require a much longer round-trip to return the material.

Multiple types of asteroids have been identified but the three main types would include the C-type, S-type, and M-type asteroids:

    have a high abundance of water which is not currently of use for mining but could be used in an exploration effort beyond the asteroid. Mission costs could be reduced by using the available water from the asteroid. C-type asteroids also have a lot of organic carbon, phosphorus, and other key ingredients for fertilizer which could be used to grow food. [21] carry little water but look more attractive because they contain numerous metals, including nickel, cobalt, and more valuable metals, such as gold, platinum, and rhodium. A small 10-meter S-type asteroid contains about 650,000 kg (1,433,000 lb) of metal with 50 kg (110 lb) in the form of rare metals like platinum and gold. [21] are rare but contain up to 10 times more metal than S-types [21]

A class of easily recoverable objects (EROs) was identified by a group of researchers in 2013. Twelve asteroids made up the initially identified group, all of which could be potentially mined with present-day rocket technology. Of 9,000 asteroids searched in the NEO database, these twelve could all be brought into an Earth-accessible orbit by changing their velocity by less than 500 meters per second (1,800 km/h 1,100 mph). The dozen asteroids range in size from 2 to 20 meters (10 to 70 ft). [22]

Asteroid cataloging Edit

The B612 Foundation is a private nonprofit foundation with headquarters in the United States, dedicated to protecting Earth from asteroid strikes. As a non-governmental organization it has conducted two lines of related research to help detect asteroids that could one day strike Earth, and find the technological means to divert their path to avoid such collisions.

The foundation's 2013 goal was to design and build a privately financed asteroid-finding space telescope, Sentinel, hoping in 2013 to launch it in 2017–2018. The Sentinel's infrared telescope, once parked in an orbit similar to that of Venus, is designed to help identify threatening asteroids by cataloging 90% of those with diameters larger than 140 metres (460 ft), as well as surveying smaller Solar System objects. [23] [24] [25] [ needs update ]

Data gathered by Sentinel was intended to be provided through an existing scientific data-sharing network that includes NASA and academic institutions such as the Minor Planet Center in Cambridge, Massachusetts. Given the satellite's telescopic accuracy, Sentinel's data may prove valuable for other possible future missions, such as asteroid mining. [24] [25] [26]

There are four options for mining: [19]

    , [27] which may be enabled by biomining. [28]
  1. Bring raw asteroidal material to Earth for use.
  2. Process it on-site to bring back only processed materials, and perhaps produce propellant for the return trip.
  3. Transport the asteroid to a safe orbit around the Moon or Earth or to the ISS. [9] This can hypothetically allow for most materials to be used and not wasted. [6]

Processing in situ for the purpose of extracting high-value minerals will reduce the energy requirements for transporting the materials, although the processing facilities must first be transported to the mining site. In situ mining will involve drilling boreholes and injecting hot fluid/gas and allow the useful material to react or melt with the solvent and extract the solute. Due to the weak gravitational fields of asteroids, any activities, like drilling, will cause large disturbances and form dust clouds. These might be confined by some dome or bubble barrier. Or else some means of rapidly dissipating any dust could be provided for.

Mining operations require special equipment to handle the extraction and processing of ore in outer space. [19] The machinery will need to be anchored to the body, [ potreban citat ] but once in place, the ore can be moved about more readily due to the lack of gravity. However, no techniques for refining ore in zero gravity currently exist. Docking with an asteroid might be performed using a harpoon-like process, where a projectile would penetrate the surface to serve as an anchor then an attached cable would be used to winch the vehicle to the surface, if the asteroid is both penetrable and rigid enough for a harpoon to be effective. [29]

Due to the distance from Earth to an asteroid selected for mining, the round-trip time for communications will be several minutes or more, except during occasional close approaches to Earth by near-Earth asteroids. Thus any mining equipment will either need to be highly automated, or a human presence will be needed nearby. [19] Humans would also be useful for troubleshooting problems and for maintaining the equipment. On the other hand, multi-minute communications delays have not prevented the success of robotic exploration of Mars, and automated systems would be much less expensive to build and deploy. [30]

Technology being developed by Planetary Resources to locate and harvest these asteroids has resulted in the plans for three different types of satellites:

  1. Arkyd Series 100 (the Leo Space telescope) is a less expensive instrument that will be used to find, analyze, and see what resources are available on nearby asteroids. [21]
  2. Arkyd Series 200 (the Interceptor) Satellite that would actually land on the asteroid to get a closer analysis of the available resources. [21]
  3. Arkyd Series 300 (Rendezvous Prospector) Satellite developed for research and finding resources deeper in space. [21]

Technology being developed by Deep Space Industries to examine, sample, and harvest asteroids is divided into three families of spacecraft:

  1. FireFlies are triplets of nearly identical spacecraft in CubeSat form launched to different asteroids to rendezvous and examine them. [31]
  2. DragonFlies also are launched in waves of three nearly identical spacecraft to gather small samples (5–10 kg) and return them to Earth for analysis. [31]
  3. Harvestors voyage out to asteroids to gather hundreds of tons of material for return to high Earth orbit for processing. [32]

Technology is being developed by TransAstra Corporation to locate and harvest asteroids with the Apis family of spacecraft, which comprises three classes of flight systems:

  1. Mini Bee is an experimental technology demonstration vehicle designed to showcase the company's patented approach to asteroid mining using concentrated solar energy known as optical mining [33]
  2. Honey Bee is a mid-sized spacecraft designed to utilize optical mining technology to harvest asteroids up to 10 meters in average diameter [33]
  3. Queen Bee is the largest spacecraft in the Apis family, an evolution of the Honey Bee that is scaled to enable capture and mining of asteroids up to 40 meters in average diameter [33]

Asteroid mining could potentially revolutionize space exploration. [ original research? ] The C-type asteroids' high abundance of water could be used to produce fuel by splitting water into hydrogen and oxygen. This would make space travel a more feasible option by lowering cost of fuel. While the cost of fuel is a relatively insignificant factor in the overall cost for low earth orbit manned space missions, storing it and the size of the craft become a much bigger factor for interplanetary missions. Typically 1 kg in orbit is equivalent to more than 10 kg on the ground (for a Falcon 9 1.0 it would need 250 tons of fuel to put 5 tons in GEO orbit or 10 tons in LEO). [ potreban citat ] This limitation is a major factor in the difficulty of interplanetary missions as fuel becomes payload.

Surface mining Edit

On some types of asteroids, material may be scraped off the surface using a scoop or auger, or for larger pieces, an "active grab." [19] There is strong evidence that many asteroids consist of rubble piles, [34] potentially making this approach impractical.

Shaft mining Edit

A mine can be dug into the asteroid, and the material extracted through the shaft. This requires precise knowledge to engineer accuracy of astro-location under the surface regolith and a transportation system to carry the desired ore to the processing facility.

Magnetic rakes Edit

Asteroids with a high metal content may be covered in loose grains that can be gathered by means of a magnet. [19] [35]

Heating Edit

For asteroids such as carbonaceous chondrites that contain hydrated minerals, water and other volatiles can be extracted simply by heating. A water extraction test in 2016 [36] by Honeybee Robotics used asteroid regolith simulant [37] developed by Deep Space Industries and the University of Central Florida to match the bulk mineralogy of a particular carbonaceous meteorite. Although the simulant was physically dry (i.e., it contained no water molecules adsorbed in the matrix of the rocky material), heating to about 510 °C released hydroxyl, which came out as substantial amounts of water vapor from the molecular structure of phyllosilicate clays and sulphur compounds. The vapor was condensed into liquid water filling the collection containers, demonstrating the feasibility of mining water from certain classes of physically dry asteroids. [38]

For volatile materials in extinct comets, heat can be used to melt and vaporize the matrix. [19] [39]

Mond process Edit

The nickel and iron of an iron rich asteroid could be extracted by the Mond process. This involves passing carbon monoxide over the asteroid at a temperature between 50 and 60 °C for nickel, higher for iron, and with high pressures and enclosed in materials that are resistant to the corrosive carbonyls. This forms the gases nickel tetracarbonyl and iron pentacarbonyl - then nickel and iron can be removed from the gas again at higher temperatures, and platinum, gold etc. left as a residue. [40] [41] [42]

Self-replicating machines Edit

A 1980 NASA study entitled Advanced Automation for Space Missions proposed a complex automated factory on the Moon that would work over several years to build 80% of a copy of itself, the other 20% being imported from Earth since those more complex parts (like computer chips) would require a vastly larger supply chain to produce. [43] Exponential growth of factories over many years could refine large amounts of lunar (or asteroidal) regolith. Since 1980 there has been major progress in miniaturization, nanotechnology, materials science, and additive manufacturing, so it may be possible to achieve 100% "closure" with a reasonably small mass of hardware, although these technology advancements are themselves enabled on Earth by expansion of the supply chain so it needs further study. A NASA study in 2012 proposed a "bootstrapping" approach to establish an in-space supply chain with 100% closure, suggesting it could be achieved in only two to four decades with low annual cost. [44]

A study in 2016 again claimed it is possible to complete in just a few decades because of ongoing advances in robotics, and it argued it will provide benefits back to the Earth including economic growth, environmental protection, and provision of clean energy while also providing humanity protection against existential threats. [45]

On April 24, 2012 a plan was announced by billionaire entrepreneurs to mine asteroids for their resources. The company was called Planetary Resources and its founders include aerospace entrepreneurs Eric Anderson and Peter Diamandis. Advisers included film director and explorer James Cameron and investors included Google's chief executive Larry Page. Its executive chairman was Eric Schmidt. [14] [46] They planned to create a fuel depot in space by 2020 by using water from asteroids, splitting it to liquid oxygen and liquid hydrogen for rocket fuel. From there, it could be shipped to Earth orbit for refueling commercial satellites or spacecraft. [14] In 2020, the scheme was wound down and all hardware assets were auctioned off. [47]

Another similar venture, called Deep Space Industries, was started in 2013 by David Gump, who had founded other space companies. [48] At the time, the company hoped to begin prospecting for asteroids suitable for mining by 2015 and by 2016 return asteroid samples to Earth. [49] Deep Space Industries planned to begin mining asteroids by 2023. [50]

At ISDC-San Diego 2013, [51] Kepler Energy and Space Engineering (KESE, llc) also announced it was going to mine asteroids, using a simpler, more straightforward approach: KESE plans to use almost exclusively existing guidance, navigation and anchoring technologies from mostly successful missions like the Rosetta/Philae, Dawn, and Hayabusa, and current NASA Technology Transfer tooling to build and send a 4-module Automated Mining System (AMS) to a small asteroid with a simple digging tool to collect ≈40 tons of asteroid regolith and bring each of the four return modules back to low Earth orbit (LEO) by the end of the decade. Small asteroids are expected to be loose piles of rubble, therefore providing for easy extraction.

In September 2012, the NASA Institute for Advanced Concepts (NIAC) announced the Robotic Asteroid Prospector project, which will examine and evaluate the feasibility of asteroid mining in terms of means, methods, and systems. [52]

Being the largest body in the asteroid belt, Ceres could become the main base and transport hub for future asteroid mining infrastructure, [53] allowing mineral resources to be transported to Mars, the Moon, and Earth. Because of its small escape velocity combined with large amounts of water ice, it also could serve as a source of water, fuel, and oxygen for ships going through and beyond the asteroid belt. [53] Transportation from Mars or the Moon to Ceres would be even more energy-efficient than transportation from Earth to the Moon. [54]

According to the Asterank database, the following asteroids are considered the best targets for mining if maximum cost-effectiveness is to be achieved (last updated December 2018): [55]

Asteroid Est. Value (US$billion) Est. Profit (US$billion) Δ V ( k m / s ) Composition
Ryugu 83 30 4.663 Nickel, iron, cobalt, water, nitrogen, hydrogen, ammonia
1989 ML 14 4 4.889 Nickel, iron, cobalt
Nereus 5 1 4.987 Nickel, iron, cobalt
Bennu 0.7 0.2 5.096 Iron, hydrogen, ammonia, nitrogen
Didymos 62 16 5.162 Nickel, iron, cobalt
2011 UW158 7 2 5.189 Platinum, nickel, iron, cobalt
Anteros 5,570 1,250 5.440 Magnesium silicate, aluminum, iron silicate
2001 CC21 147 30 5.636 Magnesium silicate, aluminum, iron silicate
1992 TC 84 17 5.648 Nickel, iron, cobalt
2001 SG10 3 0.5 5.880 Nickel, iron, cobalt
Psyche 27.67 1.78 - Nickel, iron, cobalt, gold [56]

Currently, the quality of the ore and the consequent cost and mass of equipment required to extract it are unknown and can only be speculated. Some economic analyses indicate that the cost of returning asteroidal materials to Earth far outweighs their market value, and that asteroid mining will not attract private investment at current commodity prices and space transportation costs. [57] [58] Other studies suggest large profit by using solar power. [59] [60] Potential markets for materials can be identified and profit generated if extraction cost is brought down. For example, the delivery of multiple tonnes of water to low Earth orbit for rocket fuel preparation for space tourism could generate a significant profit if space tourism itself proves profitable. [61]

In 1997 it was speculated that a relatively small metallic asteroid with a diameter of 1.6 km (1 mi) contains more than US$20 trillion worth of industrial and precious metals. [8] [62] A comparatively small M-type asteroid with a mean diameter of 1 km (0.62 mi) could contain more than two billion metric tons of iron–nickel ore, [63] or two to three times the world production of 2004. [64] The asteroid 16 Psyche is believed to contain 1.7 × 10 19 kg of nickel–iron, which could supply the world production requirement for several million years. A small portion of the extracted material would also be precious metals.

Not all mined materials from asteroids would be cost-effective, especially for the potential return of economic amounts of material to Earth. For potential return to Earth, platinum is considered very rare in terrestrial geologic formations and therefore is potentially worth bringing some quantity for terrestrial use. Nickel, on the other hand, is quite abundant and being mined in many terrestrial locations, so the high cost of asteroid mining may not make it economically viable. [65]

Although Planetary Resources indicated in 2012 that the platinum from a 30-meter-long (98 ft) asteroid could be worth US$25–50 billion, [66] an economist remarked any outside source of precious metals could lower prices sufficiently to possibly doom the venture by rapidly increasing the available supply of such metals. [67]

Development of an infrastructure for altering asteroid orbits could offer a large return on investment. [68]

Scarcity Edit

Scarcity is a fundamental economic problem of humans having seemingly unlimited wants in a world of limited resources. Since Earth's resources are finite, the relative abundance of asteroidal ore gives asteroid mining the potential to provide nearly unlimited resources, which would essentially eliminate scarcity for those materials.

The idea of exhausting resources is not new. In 1798, Thomas Malthus wrote, because resources are ultimately limited, the exponential growth in a population would result in falls in income per capita until poverty and starvation would result as a constricting factor on population. [69] Malthus posited this 223 years ago, and no sign has yet emerged of the Malthus effect regarding raw materials.

    are deposits of mineral resources that are already discovered and known to be economically extractable under present or similar demand, price and other economic and technological conditions. [69]
  • Conditional reserves are discovered deposits that are not yet economically viable. [69]
  • Indicated reserves are less intensively measured deposits whose data is derived from surveys and geological projections. Hypothetical reserves and speculative resources make up this group of reserves. [69]
  • Inferred reserves are deposits that have been located but not yet exploited. [69]

Continued development in asteroid mining techniques and technology will help to increase mineral discoveries. [70] As the cost of extracting mineral resources, especially platinum group metals, on Earth rises, the cost of extracting the same resources from celestial bodies declines due to technological innovations around space exploration. [69] The "substitution effect", i.e. the use of other materials for the functions now performed by platinum, would increase in strength as the cost of platinum increased. New supplies would also come to market in the form of jewelry and recycled electronic equipment from itinerant "we buy platinum" businesses like the "we buy gold" businesses that exist now.

As of September 2016 [update] , there are 711 known asteroids with a value exceeding US$100 trillion. [71]

Financial feasibility Edit

Space ventures are high-risk, with long lead times and heavy capital investment, and that is no different for asteroid-mining projects. These types of ventures could be funded through private investment or through government investment. For a commercial venture it can be profitable as long as the revenue earned is greater than total costs (costs for extraction and costs for marketing). [69] The costs involving an asteroid-mining venture have been estimated to be around US$100 billion in 1996. [69]

There are six categories of cost considered for an asteroid mining venture: [69]

  1. Research and development costs
  2. Exploration and prospecting costs
  3. Construction and infrastructure development costs
  4. Operational and engineering costs
  5. Environmental costs
  6. Time cost

Determining financial feasibility is best represented through net present value. [69] One requirement needed for financial feasibility is a high return on investments estimating around 30%. [69] Example calculation assumes for simplicity that the only valuable material on asteroids is platinum. On August 16, 2016 platinum was valued at $1157 per ounce or $37,000 per kilogram. At a price of $1,340, for a 10% return on investment, 173,400 kg (5,575,000 ozt) of platinum would have to be extracted for every 1,155,000 tons of asteroid ore. For a 50% return on investment 1,703,000 kg (54,750,000 ozt) of platinum would have to be extracted for every 11,350,000 tons of asteroid ore. This analysis assumes that doubling the supply of platinum to the market (5.13 million ounces in 2014) would have no effect on the price of platinum. A more realistic assumption is that increasing the supply by this amount would reduce the price 30–50%. [ potreban citat ]

The financial feasibility of asteroid mining with regards to different technical parameters has been presented by Sonter [72] and more recently by Hein et al. [73]

Hein et al. [73] have specifically explored the case where platinum is brought from space to Earth and estimate that economically viable asteroid mining for this specific case would be rather challenging.

Decreases in the price of space access matter. The start of operational use of the low-cost-per-kilogram-in-orbit Falcon Heavy launch vehicle in 2018 is projected by astronomer Martin Elvis to have increased the extent of economically-minable near-Earth asteroids from hundreds to thousands. With the increased availability of several kilometers per second of delta-v that Falcon Heavy provides, it increases the number of NEAs accessible from 3 percent to around 45 percent. [74]

Precedent for joint investment by multiple parties into a long-term venture to mine commodities may be found in the legal concept of a mining partnership, which exists in the state laws of multiple US states including California. In a mining parternship, "[Each] member of a mining partnership shares in the profits and losses thereof in the proportion which the interest or share he or she owns in the mine bears to the whole partnership capital or whole number of shares." [75]

Space law involves a specific set of international treaties, along with national statutory laws. The system and framework for international and domestic laws have emerged in part through the United Nations Office for Outer Space Affairs. [76] The rules, terms and agreements that space law authorities consider to be part of the active body of international space law are the five international space treaties and five UN declarations. Approximately 100 nations and institutions were involved in negotiations. The space treaties cover many major issues such as arms control, non-appropriation of space, freedom of exploration, liability for damages, safety and rescue of astronauts and spacecraft, prevention of harmful interference with space activities and the environment, notification and registration of space activities, and the settlement of disputes. In exchange for assurances from the space power, the nonspacefaring nations acquiesced to U.S. and Soviet proposals to treat outer space as a commons (res communis) territory which belonged to no one state.

Asteroid mining in particular is covered by both international treaties—for example, the Outer Space Treaty—and national statutory laws—for example, specific legislative acts in the United States [77] and Luxembourg. [78]

Varying degrees of criticism exist regarding international space law. Some critics accept the Outer Space Treaty, but reject the Moon Agreement. The Outer Space Treaty allows private property rights for outer space natural resources once removed from the surface, subsurface or subsoil of the Moon and other celestial bodies in outer space. [ potreban citat ] Thus, international space law is capable of managing newly emerging space mining activities, private space transportation, commercial spaceports and commercial space stations/habitats/settlements. Space mining involving the extraction and removal of natural resources from their natural location is allowable under the Outer Space Treaty. [ potreban citat ] Once removed, those natural resources can be reduced to possession, sold, [ potreban citat ] traded and explored or used for scientific purposes. International space law allows space mining, specifically the extraction of natural resources. It is generally understood within the space law authorities that extracting space resources is allowable, even by private companies for profit. [ potreban citat ] However, international space law prohibits property rights over territories and outer space land.

Astrophysicists Carl Sagan and Steven J. Ostro raised the concern altering the trajectories of asteroids near Earth might pose a collision hazard threat. They concluded that orbit engineering has both opportunities and dangers: if controls instituted on orbit-manipulation technology were too tight, future spacefaring could be hampered, but if they were too loose, human civilization would be at risk. [68] [79] [80]

The Outer Space Treaty Edit

After ten years of negotiations between nearly 100 nations, the Outer Space Treaty opened for signature on January 27, 1966. It entered into force as the constitution for outer space on October 10, 1967. The Outer Space Treaty was well received it was ratified by ninety-six nations and signed by an additional twenty-seven states. The outcome has been that the basic foundation of international space law consists of five (arguably four) international space treaties, along with various written resolutions and declarations. The main international treaty is the Outer Space Treaty of 1967 it is generally viewed as the "Constitution" for outer space. By ratifying the Outer Space Treaty of 1967, ninety-eight nations agreed that outer space would belong to the "province of mankind", that all nations would have the freedom to "use" and "explore" outer space, and that both these provisions must be done in a way to "benefit all mankind". The province of mankind principle and the other key terms have not yet been specifically defined (Jasentuliyana, 1992). Critics have complained that the Outer Space Treaty is vague. Yet, international space law has worked well and has served space commercial industries and interests for many decades. The taking away and extraction of Moon rocks, for example, has been treated as being legally permissible.

The framers of Outer Space Treaty initially focused on solidifying broad terms first, with the intent to create more specific legal provisions later (Griffin, 1981: 733–734). This is why the members of the COPUOS later expanded the Outer Space Treaty norms by articulating more specific understandings which are found in the "three supplemental agreements" – the Rescue and Return Agreement of 1968, the Liability Convention of 1973, and the Registration Convention of 1976 (734).

Hobe (2007) explains that the Outer Space Treaty "explicitly and implicitly prohibits only the acquisition of territorial property rights" but extracting space resources is allowable. It is generally understood within the space law authorities that extracting space resources is allowable, even by private companies for profit. However, international space law prohibits property rights over territories and outer space land. Hobe further explains that there is no mention of “the question of the extraction of natural resources which means that such use is allowed under the Outer Space Treaty” (2007: 211). He also points out that there is an unsettled question regarding the division of benefits from outer space resources in accordance with Article, paragraph 1 of the Outer Space Treaty. [81]

The Moon Agreement Edit

The Moon Agreement was signed on December 18, 1979 as part of the United Nations Charter and it entered into force in 1984 after a five state ratification consensus procedure, agreed upon by the members of the United Nations Committee on Peaceful Uses of Outer Space (COPUOS). [82] As of September 2019, only 18 nations have signed or ratified the treaty. [82] The other three outer space treaties experienced a high level of international cooperation in terms of signage and ratification, but the Moon Treaty went further than them, by defining the Common Heritage concept in more detail and by imposing specific obligations on the parties engaged in the exploration and/or exploitation of outer space. The Moon Treaty explicitly designates the Moon and its natural resources as part of the Common Heritage of Mankind. [83]

The Article 11 establishes that lunar resources are "not subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means." [84] However, exploitation of resources is suggested to be allowed if it is "governed by an international regime" (Article 11.5), but the rules of such regime have not yet been established. [85] S. Neil Hosenball, the NASA General Counsel and chief US negotiator for the Moon Treaty, cautioned in 2018 that negotiation of the rules of the international regime should be delayed until the feasibility of exploitation of lunar resources has been established. [86]

The objection to the treaty by the spacefaring nations is held to be the requirement that extracted resources (and the technology used to that end) must be shared with other nations. The similar regime in the United Nations Convention on the Law of the Sea is believed to impede the development of such industries on the seabed. [87]

The United States, the Russian Federation, and the People’s Republic of China (PRC) have neither signed, acceded to, nor ratified the Moon Agreement. [88]

Legal regimes of some countries Edit

The US Edit

Some nations are beginning to promulgate legal regimes for extraterrestrial resource extraction. For example, the United States "SPACE Act of 2015"—facilitating private development of space resources consistent with US international treaty obligations—passed the US House of Representatives in July 2015. [89] [90] In November 2015 it passed the United States Senate. [91] On 25 November US-President Barack Obama signed the H.R.2262 – U.S. Commercial Space Launch Competitiveness Act into law. [92] The law recognizes the right of U.S. citizens to own space resources they obtain and encourages the commercial exploration and utilization of resources from asteroids. According to the article § 51303 of the law: [93]

A United States citizen engaged in commercial recovery of an asteroid resource or a space resource under this chapter shall be entitled to any asteroid resource or space resource obtained, including to possess, own, transport, use, and sell the asteroid resource or space resource obtained in accordance with applicable law, including the international obligations of the United States

On 6 April 2020 US-President Donald Trump signed the Executive Order on Encouraging International Support for the Recovery and Use of Space Resources. According to the Order: [94] [95]

  • Americans should have the right to engage in commercial exploration, recovery, and use of resources in outer space
  • the US does not view space as a "global commons"
  • the US opposes the Moon Agreement

Luxembourg Edit

In February 2016, the Government of Luxembourg announced that it would attempt to "jump-start an industrial sector to mine asteroid resources in space" by, among other things, creating a "legal framework" and regulatory incentives for companies involved in the industry. [78] [96] By June 2016, it announced that it would "invest more than US$200 million in research, technology demonstration, and in the direct purchase of equity in companies relocating to Luxembourg." [97] In 2017, it became the "first European country to pass a law conferring to companies the ownership of any resources they extract from space", and remained active in advancing space resource public policy in 2018. [98] [99]

In 2017, Japan, Portugal, and the UAE entered into cooperation agreements with Luxembourg for mining operations in celestial bodies. [100]

A positive impact of asteroid mining has been conjectured as being an enabler of transferring industrial activities into space, such as energy generation. [45] A quantitative analysis of the potential environmental benefits of water and platinum mining in space has been developed, where potentially large benefits could materialize, depending on the ratio of material mined in space and mass launched into space. [101]

Ongoing and planned Edit

    – ongoing JAXA asteroid sample return mission (arrived at the target in 2018, returned sample in 2020) – ongoing NASA asteroid sample return mission (launched in September 2016) – proposed Roskosmos sample return mission to Phobos (launch in 2024) — planned to prospect for lunar resources in 2022.

Completed Edit

First successful missions by country: [102]

Nation Flyby Orbit Landing Sample return
USA ICE (1985) NEAR (1997) NEAR (2001) Stardust (2006)
Japan Suisei (1986) Hayabusa (2005) Hayabusa (2005) Hayabusa (2010)
EU ICE (1985) Rosetta (2014) Rosetta (2014)
Soviet Union Vega 1 (1986)
kina Chang'e 2 (2012)

The first mention of asteroid mining in science fiction apparently came in Garrett P. Serviss' story Edison's Conquest of Mars, published in the New York Evening Journal in 1898. [103] [104]

The 1979 film Alien, directed by Ridley Scott, features the crew of the Nostromo, a commercially operated spaceship on a return trip to Earth hauling a refinery and 20 million tons of mineral ore mined from an asteroid.

C. J. Cherryh's 1991 novel, Heavy Time, focuses on the plight of asteroid miners in the Alliance-Union universe, while Moon is a 2009 British science fiction drama film depicting a lunar facility that mines the alternative fuel helium-3 needed to provide energy on Earth. It was notable for its realism and drama, winning several awards internationally. [105] [106] [107]

Several science-fiction video games include asteroid mining. For example, in the space-MMO, EVE Online, asteroid mining is a very popular career, owing to its simplicity. [108] [109] [110]

In the computer game Star Citizen, the mining occupation supports a variety of dedicated specialists, each of which has a critical role to play in the effort. [111]

In The Expanse series of novels, asteroid mining is a driving economic force behind the colonization of the solar system. Since huge energy input is required to escape planets' gravity, the novels imply that once space-based mining platforms are established, it will be more efficient to harvest natural resources (water, oxygen, building materials, etc.) from asteroids rather than lifting them out of Earth's gravity well. [ potreban citat ]


Pogledajte video: Ovaj Asteroid će pogoditi Zemlju! NASA (Oktobar 2022).